Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 20(3)2023 01 18.
Article in English | MEDLINE | ID: covidwho-2244243

ABSTRACT

This study describes the chemical and toxicological characteristics of fine particulate matter (PM2.5) in the Po Valley, one of the largest and most polluted areas in Europe. The investigated samples were collected in the metropolitan area of Milan during the epidemic lockdown and their toxicity was evaluated by the oxidative potential (OP), measured using ascorbic acid (OPAA) and dithiothreitol (OPDTT) acellular assays. The study was also extended to PM2.5 samples collected at different sites in the Po Valley in 2019, to represent the baseline conditions in the area. Univariate correlations were applied to the whole dataset to link the OP responses with the concentrations of the major chemical markers of vehicular and biomass burning emissions. Of the two assays, OPAA was found mainly sensitive towards transition metals released from vehicular traffic, while OPDTT towards the PM carbonaceous components. The impact of the controlling lockdown restrictions on PM2.5 oxidative properties was estimated by comparing the OP values in corresponding time spans in 2020 and 2019. We found that during the full lockdown the OPAA values decreased to 80-86% with respect to the OP data in other urban sites in the area, while the OPDTT values remained nearly constant.


Subject(s)
Air Pollutants , COVID-19 , Humans , Air Pollutants/analysis , Seasons , Environmental Monitoring/methods , COVID-19/epidemiology , Communicable Disease Control , Particulate Matter/analysis , Italy/epidemiology , Oxidative Stress
2.
Environments ; 9(11):145, 2022.
Article in English | MDPI | ID: covidwho-2116182

ABSTRACT

This research investigates the impact of controlling pandemic measures on the characteristics of atmospheric particulate matter (PM), with specific concern to its toxicity, measured by its oxidative properties. The investigated PM10 samples were collected in the metropolitan area of Milan during the epidemic lockdown, and their oxidative potential (OP) was assessed using ascorbic acid (AA) and dithiothreitol (DTT) acellular assays. During the full lockdown, we estimated reductions to 46% and 60% for nitrogen dioxide (NO2) and black carbon (BC) concentrations, respectively, based on the aggregated 2018-2019 data of NO2 and BC levels, used as baseline conditions. To quantify the impact of lockdown restrictions on PM oxidative activity, we studied the OP data measured in our laboratory on PM10 filters and directly compared the results from 15-30 April 2020 with those from the same time span in 2019. The OPAA values dropped to nearly 50%, similar to the concentration decrease in Elemental Carbon (EC) and traffic related metals, as well as to the variation in NO2 level. Otherwise, the OPDTT responses decreased to nearly 75%, as described by the corresponding reduction in Organic Carbon (OC) concentration and BC level.

SELECTION OF CITATIONS
SEARCH DETAIL